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S3. Model calibration and forecasting approach 

We estimate the best-fit solution for each model using non-linear least squares fitting procedure 

for each of the three models (i.e., the GLM, Richards growth model and the sub-epidemic wave 

model) [1]. This process yields the best set of parameter estimates Θ$ = (θ1, θ2, …, θm), where 

m is the number of parameters of interest, by minimizing the sum of squared errors between 

the model fit, 𝑓(𝑡! , Θ$)	and the observed data, 𝑦"!. The parameters Θ$ = 𝑎𝑟𝑔𝑚𝑖𝑛∑ (𝑓(𝑡! ,#
!$% Θ$) −

𝑦"!)
&	define the best fit model solution, 𝑓(𝑡, 𝛩), where 𝑡! is the time stamps at which time series 

data are observed and n is the number of data points available for inference. In this analysis, 

Θ$ = (𝑟, 𝑝, 𝑘' , 𝑞	𝑎𝑛𝑑	𝐶"()) corresponds to the set of parameters of the sub-epidemic model, Θ$ =

(𝑟, 𝑘*, 𝑎) corresponds to set of parameters of the Richards model, Θ$ = (𝑟, 𝑝, 𝑘*) corresponds 

to the set of parameters of the GLM model [2]. For the sub-epidemic wave model, we determine 

the initial best guesses of parameter estimates. However, for the GLM and Richards growth 

model we initialize the parameter estimates for the nonlinear least squares method [1] over a 

wide range of plausible parameters from a uniform distribution using Latin hypercube sampling 

[3]. This allows us to test the uniqueness of the best model fit. The initial conditions are set at 

the first data point for each of the three models [2].  

 

Uncertainty bounds around the best-fit solution are generated using a parametric bootstrap 

approach with replacement of data, where we assume a negative binomial error structure for 

the sub-epidemic model. A negative binomial error structure is also used to generate the 

uncertainty bounds of the Richards growth model and the GLM. For both these models, using 

the case incidence data the variance is assumed to be 488.85 times of the mean for national 

data, 11.59 times of the mean for Amazon region, 356.8 times of the mean for Andean region, 

69.72 times of the mean for the Caribbean region, 77.93 times the mean for the pacific region, 

and 22.17 times of the mean for the Orinoquia region. For the mortality data the variance is 



assumed to be 17.95 times of the mean. This variance is based on the noise in the data and 

calculated by averaging mean to variance ratio obtained from the data. A detailed description 

of this method is provided in a prior study [2].  

 

Each of the M=300 best-fit parameter sets is used to construct the 95% confidence intervals for 

each parameter by refitting the models to each of the M datasets generated by the bootstrap 

approach during the calibration phase. Further, each of the M best-fit model solutions is used 

to generate m= 30 additional simulations with a negative binomial error structure for the GLM, 

Richards and the sub-epidemic wave model extended through a 30-day forecasting period. 

Finally, we construct the 95% prediction intervals using the 9000 (M × m) curves for the 

forecasting period. A detailed description of the parameter estimation methods can be found in 

previous literature [2, 4, 5]. 
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